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Abstract

This paper presents a simple and stable procedure for the estimation of periods and
dampings of piled shear buildings taking soil-structure interaction into account. A substruc-
turing methodology that includes the three-dimensional character of the foundations is used.
The structure is analyzed as founded on an elastic homogeneous half-space and excited by
vertically-incident S waves. The strategies proposed in the literature to estimate the period
and damping are revised, and a modified strategy is proposed including crossed impedances
and all damping terms. Ready-to-use graphs are presented for the estimation of flexible-
base period and damping in terms of their fixed-base values and the system configuration.
Maximum shear forces together with base displacement and rocking peak response are also
provided. It is shown that cross-coupled impedances and kinematic interaction factors need
to be taken into account to obtain accurate results for piled buildings.

1 INTRODUCTION

When analysing the seismic behaviour of structures, kinematic and inertial effects associated
to soil-structure interaction (SSI) affect the dynamic characteristics of the interacting system
and influence the ground motion around the foundation. Thus, it is important to assess the
variations of the system period associated with the soil stiffness, as well as the variations of
the modal damping associated with the material damping in the soil and especially with the
radiation effects.

The effects of SSI on the dynamic characteristics of soil-structure systems have been widely
studied both for shallow foundations [1, 2, 3, 4, 5, 6] and for embedded foundations using both
3D models [7, 8, 9, 10] and 2D models [11, 12]. The papers by Jenning and Bielak [4], Veletsos
and Meek [2], Luco [5], Wolf [6] or Bielak [7], all introduce the analogy of a fixed-base replace-
ment SDOF oscillator whose period and damping can represent the dynamic behaviour of the
structure-foundation system. In all these pioneering works, some simplifying assumptions were
used in order to obtain results or expressions for the effective system period and damping: the
influence of the coupled terms of the soil-impedance matrix was neglected and, for embedded
foundations, the kinematic effects of the incident wave were not considered, using as base ex-
citation a horizontal harmonic motion with constant amplitude. In contrast, the effects of the
foundation embedment considering both kinematic and inertial interaction were taken into ac-
count by Avilés and Pérez-Rocha [9] (for 3D rectangular foundations), by Avilés and Suárez [13]
(for axisymmetrical embedded foundations in a layer), and by Todorovska [11] and Todorovska
and Trifunac [14, 12] who presented a 2D model with analytical solutions for impedances and
kinematic effects for very long buildings founded on rigid cylindrical foundations. Also, Todor-
ovska and Trifunac [14, 12] and Avilés et al. [10] for problems with square embedded foundations,
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studied the effects of the type of waves and their angle of incidence on the system frequency and
damping.

Regarding pile-supported buildings, and to the extent of the authors’ knowledge, there are
few studies in the scientific literature examining the effects of SSI on their dynamic characteris-
tics [15, 16, 17, 18]. Rainer [15] used a substructuring methodology to analyse the modal damping
of a superstructure supported on piles. Kaynia and Mahzooni [16] used a three-dimensional
Green’s functions-based formulation, for the pile foundation, and a single-degree-of-freedom
(SDOF) model for the structure, in order to calculate the seismic shear forces in the piles during
the seismic kinematic and inertial interaction phases for different pile foundations. On the other
hand, Aguilar and Avilés [17] analysed piled foundations by extending the Avilés and Pérez-
Rocha’s [9] procedure for embedded foundations and thus they studied the SSI effects on the
system period and damping for a specific configuration of 8 × 8 piles. Moreover, Maravas et
al. [18] presented a simple methodology in order to study SSI effects on single-pile supported
one-storey shear structures by obtaining its period and damping. However, there are no para-
metric studies of this nature for piled foundations consisting of a variable number of piles, with
different embedment and spacing between them.

Following the reference works for shallow and embedded foundations systems, the aim of
this work is to evaluate the influence of SSI on the period and damping of shear structures
founded on square pile groups embedded in homogeneous viscoelastic half-spaces subjected to
vertically-incident S waves. The analysis is performed by a substructuring model in the frequency
domain that takes into account both kinematic and inertial interaction effects. In this study,
the harmonic response of the soil-structure system is obtained by making use of impedance
functions and kinematic interaction factors computed by a BEM-FEM coupling model developed
by Padrón et al. [19].

The effective period and damping of the interacting system (T̃ and ξ̃) [8, 9, 2, 7, 14] represent
the dynamic parameters of an equivalent viscously damped SDOF system excited by the free-
field ground motion. This replacement oscillator will reproduce, as accurately as possible, the
coupled system response within the range where the peak response occurs. A comparative review
of the different strategies used in the literature for establishing this equivalence and calculating
the parameters of this single-degree-of-freedom system is presented, identifying those that best
suit to the problem under study and proposing a modification. Thus, a simplified and stable
procedure, which takes into account all the elements of the matrix of impedances, is developed
herein. The accuracy of this simplified procedure is assessed through comparisons with the
solution obtained from the iterative resolution of a complex-valued system of equations which
represents the equation of motion of the interacting system. Results in terms of period T̃ /T and
damping ξ̃ for different pile configurations are provided in ready-to-use graphs that can be used
to build modified response spectra that include SSI effects.

All equations are expressed in terms of the main dimensionless parameters of the problem
which considerably facilitates the analysis of their influence on the system dynamic response.
The influence of the more important parameters involved (wave parameter, slenderness ratio,
spacing between adjacent piles, embedment ratio and number of piles) is analysed over practical
ranges of interest. Moreover, the influence of the consideration of the cross-coupled impedance
and the kinematic interaction factors for the pile-groups configurations is also studied.

2 PROBLEM DEFINITION

The dynamic response of pile-supported linear shear structures is investigated in this work
making use of a single-degree-of-freedom system in its fixed-base condition, as the one depicted
in Figure 1, that may represent either one-storey structures or one mode of vibration of multi-
storey buildings. The superstructure can be defined by its fixed-base period T , its mass m,
the structural stiffness k, the height h of the resultant of the inertia forces for the mode, the
moment of inertia of the vibrating mass I, and the viscous damping ratio ξ. The structure is
considered to be founded on a square pile group embedded in a homogeneous, viscoelastic and
isotropic half-space, as depicted in Figure 1. It is assumed that the pile heads are constrained
by a rigid pile cap, considered as a rigid square plate of negligible thickness, which is not in
contact with the half-space. The pile group is defined by length L and sectional diameter d
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of piles, centre-to-centre spacing between adjacent piles s, cap mass mo, and cap moment of
inertia about the centre of gravity of the cap Io. The foundation halfwidth is denoted by b.
The columns of the structure are assumed to be massless and axially inextensible. Both the
foundation mass and the mass of the structure are presumed to be uniformly distributed over
square areas. This model of the foundation-structure system is an enhancement of that which
appears to have been first used by Parmelee [20] in 1967 for shallow foundations and, according
to Veletsos and Meek [2], has formed the basis of most subsequent investigations.

Figure 1: Problem definition. Single shear structure supported on a piled foundation embedded
in a homogeneous half-space under vertically-incident S waves

If SSI is taken into account, the system behaviour can be approximated by that of a three-
degree-of-freedom system, defined by the foundation horizontal displacement uc and rocking
ϕc, together with the structural horizontal deflection u. (Note that rocking of pile cap and
structure are identical). The system is subjected to vertically-incident plane S waves. Because
of the characteristics of the structural model and the wave excitation, the vertical and torsional
motions are neglected in this study.

3 SUBSTRUCTURE MODEL

This problem can be studied using a substructure approach, in which the system is subdivided
into building-cap superstructure and soil-foundation stiffness and damping, represented by means
of springs and dashpots, as shown in Figure 2. According to Kausel and Roësset [21], the
solution can be broken into three steps. In the present case, the first step (kinematic interaction)
consists in the determination of the motion of the massless pile cap when subjected to the same
input motion as the total solution. Even for vertically-incident harmonic plane S waves (in
which the free-field displacement at the ground surface is exclusively horizontal), this frequency
dependent kinematic interaction factors are represented by horizontal (ug) and rocking (ϕg)
motions at the pile cap. The next step is to determine the impedances, which are complex-valued
frequency-dependent functions (kxx, cxx), (kθθ, cθθ) and (kxθ, cxθ) that represent the stiffness and
damping of the soil in the horizontal, rocking and cross-coupled horizontal-rocking vibration
modes, respectively. The mathematical representation of impedance functions is Kij = kij +
iaocij , where ao = ωb/cs; being ω the excitation circular frequency, cs =

√

µs/ρs the speed of
propagation of shear waves in the halfspace, and µs and ρs the soil shear modulus of elasticity
and mass density, respectively. Finally, the last step consists in the computation of the response
at each frequency of the structure supported on springs and subjected to the motion computed
in the first step (see Figure 2a).

3.1 Equations of motion

The equations of motion of the system shown in Figure 2(a), assuming small displacements, can
be written in terms of relative motions, ucr = uc − ug and ϕc

r = ϕc − ϕg, as

m · [ü+ ücr + üg + h(ϕ̈g + ϕ̈c
r)] +K · u = 0 (1)

3



Figure 2: (a) Substructure model of a one-storey structure. (b) Equivalent single-degree-of-
freedom oscillator

mo · [ücr + üg] +Kxx · ucr +Kxθ · ϕc
r −K · u = 0 (2)

m · h[ü+ ücr + üg + h(ϕ̈g + ϕ̈c
r)] + I(ϕ̈c

r + ϕ̈g)

+Kθx · ucr +Kθθ · ϕc
r + Io(ϕ̈

c
r + ϕ̈g) = 0

(3)

where eq. (1) represents the horizontal force equilibrium of the vibrating mass, eq. (2) the
horizontal force equilibrium of the soil-foundation system and eq. (3) the moment equilibrium
of the structure-foundation system about the centre of gravity of the pile cap. In the frequency
domain (with time dependance eiωt), this set of equations can be expressed in a matrix form as











K 0 0
−K Kxx Kxθ

0 Kθx Kθθ



− ω2





m m mh
0 mo 0
mh mh IT











·

·





u
ucr
ϕc
r



 = ω2











m
mo

mh



ug +





mh
0
IT



ϕg







(4)

where IT = mh2 + Io + I and K = k + i2ωnmξω, being ωn = 2π/T the fixed-base natural
frequency of the superstructure. Once the foundation input motion is computed and the right-
hand vector and the coefficient matrix are known, the structural deflection and foundation
relative motions can be computed in the frequency range of interest.

3.2 System equations and dimensionless parameters

A set of dimensionless parameters, covering the main features of SSI problems, has been re-
peatedly used in the related literature to perform parametric analyses [2, 3, 8, 9]. Following
these authors, the parameters that will be used in this paper to characterize the soil-foundation-
structure system are: (1) wave parameter σ = csT/h that measures the soil-structure relative
stiffness; (2) slenderness ratio h/b; (3) mass density ratio δ = m/(4ρsb

2h) between structure and
supporting soil; (4) foundation-structure mass ratio mo/m; (5) fixed-base structure damping
ratio ξ; (6) dimensionless fixed-base natural frequency of the structure λ = ωn/ω; (7) dimen-
sionless excitation frequency ao = ωb/cs = (b/d)(ωd/cs); (8) Poisson’s ratio νs and (9) damping
ratio ξs of the soil. A hysteretic damping model of the type µs = Re[µs](1 + 2iξs) is considered
in this work for the soil material.

Regarding the pile foundation, the following dimensionless parameters are considered: pile
spacing ratio s/d, embedment ratio L/b, pile-soil Young’s modulus ratio Ep/Es, size of the
square pile group, dimensionless frequency ao, soil-pile densities ratio ρs/ρp and pile slenderness
ratio L/d.
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After adding the first two rows so that the second equation represents the horizontal equi-
librium of the whole, and performing basic algebraic operations, the equation of motion of the
system (4) can be expressed as a function of the dimensionless parameters defined above, as
follows
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(5)

where the rotational inertias have been replaced by the expressions I = mb2/3 and Io =
mob

2/3 respectively (pile cap and structure mass uniformly distributed over square areas).
The impedance functions are normalized as follows: K̃xx = Kxx/µsb, K̃θθ = Kθθ/µsb

3 and
K̃xθ = Kxθ/µsb

2, and the kinematic interaction factors are normalized with the free-field mo-
tion at the surface ugo , being Iu = ug/ugo and Iϕ = ϕgb/ugo , both being functions of the
dimensionless frequency ao.

Equation (5) was validated through comparison against results by Veletsos and Meek [2] for
shallow foundations, paper in which impedance functions come from Bielak [7] and Verbic and
Veletsos [22]. The validation was completed by reproducing the results obtained by Avilés and
Pérez-Rocha [9] for embedded foundations. Negligible differences were obtained in all cases.

4 EFFECTIVE PERIOD AND DAMPINGOF THE COUPLED

SYSTEM

The objective of this section is to find the dynamic characteristics of a viscously damped single-
degree-of-freedom (SDOF) oscillator (Figure 2b) able to reproduce, as accurately as possible,
the response of the coupled system shown in Figure 2a. This SDOF system can be defined by
its undamped natural period T̃ and its damping ratio ξ̃, so that its equation of motion can be
written as

ω̃2
nu

ω2ugo
=

1
(

ω2

ω̃2
n

− 1

)

− i 2 ξ̃
ω

ω̃n

(6)

being ω̃n = 2π/T̃ and Q = Abs[ω2
nu/ω

2ugo ] the transfer-function used to establish this equiva-
lence, which is the most appropriate from an operational point of view since it represents the
ratio of the shear force at the base of the structure to the effective earthquake force [23]. It is not
possible to find a SDOF system with constant impedances that exactly reproduces the harmonic
response curve of a three-degrees-of-freedom (3DOF) system with either constant or frequency-
dependent impedances. Therefore, the aim is to reproduce the 3DOF system response within
the range where the peak response occurs. As the definition of a SDOF system needs only two
parameters, the strategies used to determine its dynamic characteristics are based on taking one
common point between the target response of the 3DOF system and that of a SDOF system that
best approximates it. To illustrate the different possibilities, Figure 3 shows a schematic repre-
sentation of the response of the target coupled system (3DOF) together with that of two different
extensively used equivalent SDOF models described in previous works of other authors [9, 11],
as described along this section. Differences have been exaggerated in the figure to highlight the
characteristics of both strategies and show that none of the two approaches reproduces exactly
the response of the coupled system, having each one of them its own advantages and disad-
vantages. From an engineering point of view, the most intuitive strategy consist in taking as

5



common point the one corresponding to the maximum value Qm of the response spectra (see
MAX in Figure 3) as some authors such as Todorovska [11] or Avilés and Pérez-Rocha [9] do.
This strategy (MAX) can be attained in this case by the iterative resolution of the system of
equations (5), allowing to find the peak-response period Tm and the corresponding maximum
value Qm. Then, assuming that the damping mechanism of the equivalent SDOF oscillator is of
viscous nature, it is well-known that its damping ratio can be found as

ξ̃ =
1√
2

(

1−
√

Q2
m − 1

Q2
m

)

1

2

(7)

which is obtained from the expression for Qm in Figure 3. Now, the natural period of the
equivalent oscillator T̃ can be computed as

T̃ =

√

1− 2 ξ̃2 Tm (8)

which is applicable only for damping values smaller than 1/
√
2 [24].

3DOF

MAX

EIGEN

ROOT

Q
=
∣ ∣

ω
2 n
u
/ü

g

∣ ∣

Qm =
1

2ξ̃

√

1− ξ̃2
Q(λ̃) =

1

2 ξ̃

λ̃λ′ λm λ = ωn/ω

Figure 3: Strategies for obtaining the natural frequency and damping of the equivalent SDOF
system

Nevertheless, this strategy leads to unreliable natural frequencies in highly damped systems,
in which the peak-response frequency becomes rather undefined. In order to avoid this drawback,
other approach based on finding the eigenvalue λ̃ of the 3DOF system can be used. In this
respect, it is highly illustrative the procedure proposed on this line by Avilés and Pérez-Rocha [9]
for embedded foundations starting from analogous equations to those presented herein. These
authors adopt a simplification which consist in neglecting the cross-coupled horizontal-rocking
terms and then also the high-order terms involving products of damping coefficients in the
resulting expressions. By doing so, they obtain manageable approximated expressions for the
period and damping of the interacting system. Such assumption has been extensively used
by many authors [1, 2, 3, 7, 4, 5, 25, 6, 8]. However, neglecting the cross-coupled stiffness
and damping terms kxθ and cxθ is not acceptable for pile foundations, not even for certain
configurations of embedded foundations. Therefore, in order to obtain equivalent equations
while keeping the crossed-coupled impedances, it is necessary to condense the soil-foundation
interaction to a point at a certain virtual depth D(ω) = −Kxθ/Kxx (see Figure 4) such that
the impedance matrix becomes diagonal, as some authors propose [26, 18]. If, in addition, mo,
I and Io are neglected as usual (see, for instance [9]), eq. (5) becomes







λ2





(1+i2ξ′) 0 0
0 α2

xx(1+i2ξxx) 0
0 0 α2

θθ(1+i2ξθθ)



−





1 1 1
1 1 1
1 1 1











·





ω2
nu/ω

2ugo
ω2
nu

P
r /ω

2ugo
ω2
n(h+D)ϕc

r/ω
2ugo



 = −λ2

(

Iu +
h

b
Iϕ

)





1
1
1





(9)
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Figure 4: Equivalent model with diagonalized impedance matrix

where,

ξ′ =
ω

ωn
ξ (10)

α2
xx = σ2 1

16π2

h

b

1

δ
k̃xx (11)

ξxx =
c̃xx

2 ˜kxx
(12)

α2
θθ = σ2 1

16π2

h

b

1

δ
Re

[

b2

(h+D)2
K̃θθD

]

(13)

ξθθ =
Im
[

b2

(h+D)2
K̃θθD

]

2Re
[

b2

(h+D)2
K̃θθD

] (14)

being K̃xx = k̃xx + ic̃xx and

K̃θθD =
1

µsb3

(

Kθθ −
K2

θx

Kxx

)

(15)

b2

(h+D)2
=





(

h

b

)2

− 2

(

h

b

)

K̃θx

K̃xx

+

(

K̃θx

K̃xx

)2




−1

(16)

Solving the complex system of algebraic equations given in (9) for ω2
nu/ügo yields the follow-

ing expression for Q

Q(λ) =

∣

∣

∣

∣

∣

Iu(λ) +
h
b
Iϕ(λ)

A(λ) + iB(λ)

∣

∣

∣

∣

∣

(17)

where

A(λ) = 1− 1

λ2
− 1 + 4ξxxξ

′

λ2α2
xx(1+4ξ2xx)

− 1 + 4ξθθξ
′

λ2α2
θθ(1+4ξ2θθ)

(18)

B(λ) = 2

[

ξ
′ − ξ

′ − ξxx
λ2α2

xx(1+4ξ2xx)
− ξ

′ − ξθθ
λ2α2

θθ(1+4ξ2θθ)

]

(19)

The identification of the equations of motion of the coupled system (17, 18, 19) and that
corresponding to the SDOF system (6) at resonance allows to obtain the effective period by

7



finding the root of equation (18). Obviously, the 3DOF system has more than one vibration
mode and hence equation (18) has more than one root. However, in most cases of interest, the
maximum response corresponds to the first mode. For this reason, from now on, the procedure
focuses on that first solution λ′, despite being aware that there are more. Thus, the system
damping ratio can be determined as ξ̃ = 1/(2Q(λ′)).

Note that using the root λ′ of equation (18) leads to a SDOF system whose peak response does
not always lead to an acceptable approximation for the 3DOF system peak response (see ROOT
in Figure 3). However, better results are obtained by neglecting (as Avilés and Pérez-Rocha [9]
do) all second-order damping terms, which leads to the following approximate expressions for A
and B:

A(λ) = 1− 1

λ2
− 1

λ2α2
xx

− 1

λ2α2
θθ

(20)

B(λ) = 2

[

ξ
′ − ξ

′ − ξxx
λ2α2

xx

− ξ
′ − ξθθ
λ2α2

θθ

]

(21)

The dimensionless undamped natural frequency of the SDOF system λ̃ = ωn/ω̃n can be
found as the root of the equation (20). This is equivalent to the resolution of the eigenvalue
problem from equation (9), without considering damping.

As, in this case, ξ̃ = 1/(2Q(λ̃)), and taking the approximate expression for Q(λ̃) obtained
from taking equations (20) and (21) as values of A and B, one can write the system damping
ratio as

ξ̃ =

∣

∣

∣

∣

∣

(

Iu +
h

b
Iϕ

)

−1 1

λ̃2

(

ξ′ +
ξxx
α2
xx

+
ξθθ
α2
θθ

)

∣

∣

∣

∣

∣

(22)

However, it should be noticed that the influence of neglecting all second-order terms increases
with decreasing values of the pile slenderness ratio L/d, the structural slenderness ratio h/b and
the wave parameter σ as well as with increasing values of the embedment ratio L/b and the
group size. Indeed, this assumption may lead to significant differences on the system period
and damping values when h/b ≤ 2. Therefore, and unlike what Avilés and Pérez-Rocha [9] do,
the proposed procedure (EIGEN in Figure 3) calculates ξ̃ from equations (18) and (19) for the
values of A and B instead of equations (20) and (21), which yields the following expression

ξ̃ =

∣

∣

∣

∣

∣

(

Iu+
h

b
Iϕ

)

−1
[

ξ
′

λ̃2
+

1

λ̃2

(

ξxx
α2
xx(1 + i2ξxx)

+
ξθθ

α2
θθ(1 + i2ξθθ)

)

]∣

∣

∣

∣

∣

(23)

When ξ̃ < 0.2, effective period and damping results obtained either from this last described
root finding procedure (EIGEN), or by the iterative solution of the system of equations given
in (5) to find the maximum response value (MAX), are almost coincident. Figure 5 illustrates
this fact for one particular case. However, although both procedures lead to good results in
most cases, it is important to point out that, contrary to what occurs with the maximum
searching algorithm (MAX), the root finding procedure (EIGEN) will show, in all cases, a stable
behaviour whose reliability is not affected by increasing values of the equivalent system damping
(ξ̃ > 0.2). For this reason, the simplified procedure (EIGEN) is the strategy employed forward,
being also true that, as discussed below, the equivalent SDOF system is not always applicable
as a simplified methodology for highly damped systems.

Finally, after having described the numerical procedure to be used for defining the parameters
of the equivalent single-degree-of-freedom system, and keeping in mind that the response of such
SDOF replacement oscillator does not match exactly that of the complete 3DOF system, it is
necessary to establish a practical range of validity which, as generally assumed, will depend
on the problem characteristics. Avilés and Suárez [13] drew the conclusion that the equivalent
SDOF approach is not adequate for highly damped systems (ξ̃ > 0.2), which usually corresponds
to very short structures (h/b ≤ 1) on soft soils (1/σ > 0.2). The results obtained for a significant
number of the configurations analyzed in the present paper agree with such conclusion and
suggest a limit value of the parameter 1/σ between 0.2 and 0.3, depending on the configuration.
However, in many other cases, the replacement SDOF oscillator yields excellent results even
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Figure 5: Root finding procedure (EIGEN) vs maximum searching algorithm (MAX). Natural
period T̃ /T and damping ratio ξ̃ for a 2× 2 pile group. Ep/Es = 103, s/d = 15, h/b = 2, 5, 10,
L/b = 2, L/d = 30 and ξs = 0.05.

for high damping ratios (ξ̃ > 0.2). On the other hand, the pile group configuration is another
important parameter in the range of validity of the approach. In order to illustrate this fact,
Figure 6 presents frequency response functions and elastic response spectra (corresponding to
the N-S component of the 1940 El Centro Earthquake [23]) both obtained keeping 1/σ constant
as in [2], for the case of a 2 × 2 pile group with embedment and slenderness ratios of L/b = 2
and L/d = 7.5 and 15, respectively. In both cases, for h/b = 1, the equivalent damping ratio
ξ̃ is very similar (see bottom plots in the same figure). However, while the SDOF replacement
oscillator is able to approximate very closely the frequency response functions of the complete
system when L/d = 15, the same does not hold when L/d = 7.5. As a consequence, the elastic
response spectra obtained from the equivalent SDOF system are very close to those obtained
using the response of the complete 3DOF system for L/d = 15 and all values of 1/σ. However,
discrepancies are very important for L/d = 7.5, even for 1/σ = 0.1. Therefore, it is important to
point out that the equivalent single-degree-of-freedom approach shows a finite range of validity
that should be take into account before its practical application.

5 RESULTS

The procedure proposed above is used in this section to study the influence of SSI on the response
of pile-supported structures in terms of the maximum shear force at the base of the structure
per effective earthquake force unit Qm, and the effective system period T̃ /T and damping ξ̃.
The foundation horizontal displacement |ω2

nu
c
r/ügo | and rocking |ω2

nhϕ
c
r/ügo |, or the kinematic

interaction factor |Iu + (h/b)Iϕ| will also be shown in different cases. Even though it is not a
comprehensive analysis, several interesting conclusions can be drawn from studing how the SSI
effects on the system dynamic behaviour are influenced by the variation of parameters such as
the structural slenderness ratio h/b, the wave parameter σ, the spacing between adjacent piles
s/d, the embedment ratio L/b and the number of piles.

Also, different pile group configurations, for which the values of the dimensionless parameters
are listed in Table 1, are analysed in the frequency range of interest for seismic loading (ωd/cs <
0.5, according to Gazetas et al. [27]). All configurations follow the pattern represented in
Figure 7.

It is assumed that δ = 0.15; mo/m = 0; 0 < 1/σ < 0.5; h/b = 1, 2, 5, 10; ξ = 0.05; ξs = 0.05
and νs = 0.4. These values are representative for typical buildings and soils [9]. Moreover,
Ep/Es = 103 and ρs/ρp = 0.7.

It has been verified that the variation of the parameter mo/m in the range between 0 and
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Table 1: Pile groups configurations

L/b L/d
s/d

2× 2 3× 3 4× 4

1
7.5 7.5 5 3.75
15 15 10 7.5

2
7.5 3.75 2.5 1.875
15 7.5 5 3.75
30 15 10 7.5

4
15 3.75 2.5 1.875
30 7.5 5 3.75

Figure 7: Geometric configuration of groups of 2× 2 , 3× 3 and 4× 4 piles

0.5 does not yield significant differences in terms of Qm, T̃ /T and ξ̃ or the foundation horizontal
displacement |ω2

nu
c
r/ügo | and rocking |ω2

nhϕ
c
r/ügo|. These conclusions support the simplification

usually assumed by neglecting mo which is necessary to obtain the dimensionless expressions of
the solution procedure proposed in this paper.

The range of values used in this study for 1/σ encompasses most real cases as can be seen
in Stewart et al. [28], where empirical results for SSI effects are provided for 57 building sites
that covers a wide range of real structural and geotechnical conditions. Most of these cases show
values of 1/σ between 0 and 0.3.

With regard to the mass density ratio between structure and supporting soil δ, it should be
metioned that this parameter has a relevant influence on the system reponse. Figure 8 shows
that the decrease of δ implies an increase of the system stiffness which leads to lower values
of effective period T̃ /T and damping ξ̃ and, consequently, higher values of Qm. The effects
associated to SSI become more remarkable as the structural slenderness ratio h/b increases.
Nevertheless, as metioned before, the value considered herein (δ = 0.15) is representative for
typical buildings and soils and has been used in previous works by other authors such as Avilés
and Pérez-Rocha [9] or Veletsos and Meek [2].

5.1 Impedances and kinematic interaction factors

Impedances and kinematic interaction factors are key and non-trivial aspects of the problem.
Different expressions and graphs are available in the literature for certain configurations. How-
ever, in general, obtaining accurate values for a particular case requires the use of sophisticated
numerical models allowing to incorporate foundation-soil interaction rigorously. A large number
of works address the computation of impedance functions (dynamic stiffness) of piles and pile
groups. For example, analytical expressions for single floating piles are reported by Gazetas [29],
while Dobry and Gazetas [30] present expressions for pile groups using group factors that are
an extension of those obtained for static problems by Poulos [31]. Other researches related
to impedance expressions have been carried out by Konagai et al. [32], Taherzadeh et al. [33]
or Dai and Roësset [34]. In regard to kinematic interaction factors for piled foundations, and
with respect to numerical research, several studies have also been carried out (see, for instance,
[35, 36, 27, 37, 38]).

In this paper, all impedance functions and kinematic interaction factors are computed using a
boundary element (BEM)- finite element (FEM) coupling model [39, 40, 41]. Piles are modelled
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Figure 9: Impedance functions of different 2× 2 pile groups; Ep/Es = 103 and ξs = 0.05.

directly using FEM as beams according to the Bernoulli hypothesis, while soil is modelled
using BEM as a linear, isotropic, homogeneous, viscoelastic medium. Welded boundary contact
conditions at the pile-soil interfaces are assumed and the pile heads are constrained by a rigid
pile-cap which is not in contact with the half-space. This model for piled foundations is along the
lines of those proposed by other authors [38, 42, 16]. For more details on the BEM formulation,
it is really interesting to consult Manolis and Beskos [43] and Domı́nguez [44], two reference
works on the subject.

Figures 9 to 11 show the impedances of the pile groups under investigation in the range of
ao needed to obtain all results presented in the next sections. On the other hand, Figure 12
presents their kinematic interaction factors in terms of an idealized general shape [27] for each
L/d. This shape is the midline of a band which contains all the curves obtained for the different
configurations studied with this value of L/d. It has been shown that the kinematic interaction
factor associated with translation Iu depends mainly on L/d and it is not significantly influenced
by the group size. However, this conclusion is not so valid for Iϕ [36, 27, 45]. By using the
idealized kinematic interaction functions for a given value of L/d (see Figure 12), the mean
relative error committed in terms of Qm, taking as a reference the response obtained with their
exact values, is always lower than 14% for all these cases. It should be noted that, this effect
decreases for increasing values of h/b. Thus, when h/b = 10 the relative error reaches a 4% for
the most unfavourable configuration. However, although only the idealized shape of Iu and Iϕ
for each value of L/d is presented for the sake of brevity, all results presented in section 5 have
been obtained with the exact kinematic interaction functions.

5.2 Influence of cross-coupled impedances

All the results presented in this paper are obtained considering all the elements of the matrix of
impedances. Although many authors neglect the cross-coupled stiffness and damping terms [2, 7,
8, 3], this is not acceptable for pile foundations, not even for certain configurations of embedded
foundations. Therefore, a comparative analysis to determine the influence of the cross-coupled
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Figure 10: Impedance functions of different 3× 3 pile groups; Ep/Es = 103 and ξs = 0.05.
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Ep/Es = 103 and ξs = 0.05.

impedances on the system dynamic response has been addressed (not shown for the sake of
brevity). This influence generally increase with L/b and the size of the pile group. However, it
decreases with increasing values of σ, h/b or L/d.

In a significant number of cases, the system damping ξ̃ decreases when considering the cross-
coupled impedances, which implies that the system dynamic response is subestimated when
neglecting them. On the other hand, the system natural period T̃ increases in all cases when
the cross-coupled impedances are taken into account.

In the configurations studied in this work, the relative error in terms of Qm, committed by
neglecting the cross-coupled impedances, reaches a maximum value of 40%. However, the mean
relative error is below 16%.

5.3 Influence of the structural slenderness ratio h/b and the wave parameter

σ on the system dynamic behaviour

The influence of the structural slenderness ratio h/b and the wave parameter σ is examined from
Figures 13 to 16. Figures 14 to 16 will also be used for comparative analysis in next subsections.
First, figure 13 shows the system effective periodo T̃ /T for structures with h/b = 1, 2, 5 and
10, and several pile configurations. As expected, the system effective period T̃ /T increases for
decreasing values of σ, which implies lower soil stiffness. Generally, lower values of h/b lead
to a reduction of T̃ /T . However, this trend can change for h/b ≤ 1 (see Figure 13). In all
cases, SSI implies an increase of the system period (T̃ > T ). On the contrary, the value of
the effective damping ratio ξ̃ can be greater or lower than that corresponding to the fixed-base
structure depending mainly on h/b (see figures 14, 15 or 16). For buildings with h/b < 5, it
increases with 1/σ and shows values over the fixed-base structural damping ratio. By contrast,
for buildings with h/b ≥ 5 it is almost independent of 1/σ so it stands at around the fixed-base
structural damping ratio. Similar conclusions have been extracted from studies in the same line
for structures founded on shallow [2] and embedded foundations [9].

Again from figures 14, 15 or 16, it should be noted that, for short and squat buildings with
h/b ≤ 2, the value of Qm decreases as 1/σ increases. However, for high buildings with h/b ≥ 3,
Qm is moderately dependent on 1/σ and it can reach values over that corresponding to fixed-
base condition. Furthermore, the maximum value of Qm occurs for greater values of 1/σ (in
most cases between 0.1 and 0.3), as h/b increases. Indeed, in the cases analysed in this paper,
the maximum value obtained for Qm when considering SSI effects is 67% greater than that
corresponding to fixed-base condition.

The foundation horizontal displacement |ω2
nu

c
r/ügo | (see figures 15 and 16) increases with

1/σ for all cases under study. Its dependence on the structural slenderness ratio h/b is related
with the configuration corresponding to each particular case. Besides, the foundation rocking
|ω2

nhϕ
c
r/ügo | increases with 1/σ being this effect more pronounced for greater values of the ratio
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Figure 13: Effective period T̃ /T for a 4 × 4 pile group with s/d = 3.75 (left column) and for
a pile group with L/b = 4, L/d = 15 (right column). Ep/Es = 103 and ξs = 0.05. Influence of
the structural slenderness ratio h/b.

5.4 Influence of kinematic interaction factors

Figure 14 allows to show the extent to which kinematic interaction influences the dynamic char-
acteristics of the system. To this end, this figure presents T̃ , ξ̃ and Qm functions involving total
soil-structure interaction (both kinematic and inertial interaction) or only inertial interaction for
different pile groups (2×2, 3×3 and 4×4) with the same pile slenderness (L/d) and mechanical
properties (Ep/Es). Kinematic interaction is also assessed in this case through the function
|Iu+(h/b)Iϕ|. Obviously, as the natural frequency of any system does not depend on the excita-
tion, the system effective period is insensitive to kinematic interaction. However, in most cases,
the effective damping decreases when these factors are taken into account (|Iu + (h/b)Iϕ| > 1).
On the contrary, this trend could be reversed for non-slender structures (h/b ≤ 1) on soft
soils (1/σ ≥ 0.2) (i.e. |Iu + (h/b)Iϕ| < 1). This effect becomes more noticeable as the group
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size increases (stiffer foundation). Consequently, the results obtained without considering the
kinematic interaction effects are not on the side of safety except for those corresponding to non-
slender structures h/b ≤ 1. Similar conclusions were drawn by Avilés and Pérez-Rocha [9] for
embedded foundations.

It should be noted that, for those cases where the kinematic interaction effects are relevant,
their influence becomes more noticeable as the wave parameter σ decreases. With respect to the
damping ratio, the influence of the kinematic interaction effects decreases and even disappears
for decreasing values of foundation stiffness, and the same happens for increasing values of the
slenderness ratio of the structure h/b.

The relative error, in terms of maximum shear force at the base of the structure Qm, com-
mitted by ignoring the kinematic interaction factors, reaches a 55% for the most unfavourable
configuration of those analysed. This occurs for non-slender structures h/b = 1 in which the
maximum structural response value is below that corresponding to the fixed-base condition.
However, the relative error is below 10% for buildings with h/b = 10.

5.5 Influence of pile group size

As shown in Figure 14, for piled foundations with high h/b and the same embedment ratio L/b
and pile slenderness ratio L/d, fewer piles lead to a reduction of the system stiffness, which
results in an increase of the effective period. However, the magnitude of this trend decreases
for decreasing values of h/b, and tends to be the opposite for non-slender structures. On the
other hand, a larger pile group leads to greater values of the system effective damping and,
consequently, smaller maxima Qm in the response, when h/b < 5, while no clear trends are
observed for higher slendernesses. For high buildings (h/b = 5 and 10) the value obtained
for Qm when considering SSI exceeds that corresponding to fixed-base condition. Also, the
maximum value of Qm occurs for 1/σ = 0.2 when h/b = 5 and increases with 1/σ for h/b = 10,
approaching (in the depicted range) an asymptotic value that increases with the number of piles.

Regarding the foundation horizontal displacement and rocking, both increase for smaller pile
groups, being this effect more remarkable for slender structures (results not shown).

5.6 Influence of the pile slenderness ratio L/d

As shown in Figure 15, for piled foundations with the same embedment ratio L/b, increasing
values of L/d (more slender piles) imply a reduction of the effective length of piles, and conse-
quently a diminution of the system stiffness, which results in an increase of the effective period.
This effect increases as the soil stiffness decreases (lower values of σ). These differences are
smaller for short and squat structures (lower values of h/b); although this trend is even reversed
for very low values of this parameter (results not shown). By contrast, in regard to the damping
ratio, generally, the increase of L/d reduces the system damping. This effect becomes less ap-
preciable for slender structures (greater values of h/b). It should be noted that for h/b ≥ 5
the system damping ξ̃ is close to the structural damping ξ and it is not too sensitive to L/d
variations. Furthermore, it can be seen that there are not significant differences between the
results for the damping ratio for L/d = 7.5 and L/d = 15, respectively.

The results for the system maximum response Qm are affected by the trends explained
above regarding the damping ratio ξ̃. Thus, it should be noticed that when h/b ≤ 2, Qm reaches
greater values for L/d = 30 than for lower values of L/d; and there are not significant differences
between the results obtained for L/d = 7.5 and L/d = 15, respectively. However, a change of
trend can be observed when h/b ≥ 5.

Concerning the foundation horizontal displacement and rocking, it can be seen that both
increase for greater values of the pile slenderness ratio L/d.

5.7 Influence of the embedment ratio L/b

As shown in Figure 16, for piled foundations with the same spacing between adjacent piles s/d,
keeping the foundation half-width b constant, decreasing values of L/b reduce the length of piles
L, and consequently the system stiffness, which results in an increase of the effective period.
This effect is less appreciable for low values of h/b; and this trend is reversed for very low values
of this parameter that are not showed in the results presented in this paper. By contrast, in
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regard to the effective damping ratio, although it is not affected by L/b variations for 1/σ < 0.2,
in all cases the decrease of L/b results in a reduction of the system damping for higher values of
1/σ. This effect decreases for increasing values of h/b. It should be noted that for h/b ≥ 5 the
system damping ξ̃ is close to the structural damping ξ and it is not sensitive to L/b variations.

Regarding the effect of the embedment ratio on the maximum structural response Qm, the
same figure shows that this factor increases with decreasing values of the embedment ratio
L/b. Generally, this effect is more remarkable for h/b = 2 and 5; however, a change of trend
can be observed between the results corresponding to h/b = 5 and h/b = 10, respectively,
where this effect is not so appreciable. Something similar occurs with the foundation horizontal
displacement |ω2

nu
c
r/ügo |. The foundation rocking |ω2

nhϕ
c
r/ügo |, on the other hand, increases for

decreasing values of L/b, being this effect more noticeable as h/b increases.

6 CONCLUSIONS

In this paper, an analysis of the SSI effects on the period and damping of pile-supported struc-
tures is accomplished. For this purpose, an equivalence between the interacting system and a
SDOF system which reproduces, as accurately as possible, the coupled system response within
the range where the peak response occurs is established. The coupled-system response is ob-
tained by using a substructuring model in which the structure is considered as a SDOF shear
structure that represents, from a general point of view, one mode of vibration of multi-storey
buildings. Both, dynamic and kinematic interaction effects are included in the analysis of this
coupled system. Impedances and kinematic interaction factors of the piles configurations studied
in this paper, are calculated using a BEM-FEM methodology. In order to determine the dy-
namic characteristics of this equivalent SDOF system, a simplified and stable procedure, which
takes into account all the elements of the matrix of impedances, is developed herein.

Results for 21 different configurations are obtained in order to accomplish an analysis of
the influence of the main parameters of the problem for these cases. All the results obtained
herein have a dimensionless character, thus their physical interpretation must be carefully done
and requires a specific data processing taking into account the influence of every dimensionless
parameter.

The conclusions extracted from the analysis are detailed in section 5 and they are consistent
with those drawn in relevant literature for embedded foundations. The main conclusions are
summarised below.

� Piles configurations which imply stiffer foundations yield a reduction on the effective period
of the coupled system: larger number of piles (figure 14) or embedment ratio (figure 16),
and lower pile slenderness ratio (figure 15). The obtained results show that this conclusion
is not applicable for short and squat buildings, case in which the opposite occurs.

� The effective damping increases with the foundation stiffness (see figures 14, 15 and 16).

� Slender buildings as well as soft soils magnify the SSI effects for a particular configuration.
This trend can be reversed for very stiff foundations or very short and squat buildings (see
figure 13).

� The effective damping for slender buildings is close to that corresponding to fixed-base
condition or lower. For short or medium-height buildings (h/b < 5), the effective damping
increases as σ decreases and this effect becomes more relevant for stiffer piles configurations
(see e.g. figures 14 and 16).

� As the influence of the SSI effects increases, the maximum shear force at the base of the
structure remains lower than that corresponding to fixed-base condition for buildings with
h/b ≤ 2 in all configurations studied. For larger values of the structural slenderness ratio,
the maximum shear force increases when these effects are considered (see e.g. figure 15).
Stiffer foundations yield lower shear forces if h/b < 5 (See e.g. figure 14). However, for
greater slenderness, the results show variations in the trend that depend on the parameter
analyzed.
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� The foundation horizontal displacement and rocking increase for softer soils as well as for
more flexible geometric configurations (see e.g. figures 15 or 16).

Results in terms of period T̃ /T and damping ξ̃ for different pile configurations are provided
in ready-to-use graphs that can be used to build modified response spectra that include SSI
effects. Future developments of the presented work would lead to interpolated expressions for
the equivalent SDOF system dynamic characteristics that would allow to obtain more accurate
design criteria for building structures.
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